Add like
Add dislike
Add to saved papers

Functional characterization of purinergic P2Y 2 and P2Y 12 receptors involved in Japanese flounder (Paralichthys olivaceus) innate immune responses.

G-protein-coupled P2Y receptors activated by extracellular nucleotides play important roles under different physiological and pathophysiological conditions in mammals. To investigate the immunological relevance of P2Y receptors in fish, we identified and characterized the P2Y2 and P2Y12 receptors in Japanese flounder Paralichthys olivaceus. The P. olivaceus P2Y2 and P2Y12 receptors harbor seven transmembrane domains but share only 24% sequence identity. Real-time PCR analysis revealed the constitutive but unequal mRNA expression pattern of P2Y2 R and P2Y12 R in normal Japanese flounder tissues with the dominant expression of P2Y2 R in head kidney and blood and P2Y12 R in hepatopancreas. In addition, the expression of P2Y2 and P2Y12 receptors was markedly modulated by PAMPs stimulation and Edwardsiella tarda infection. Furthermore, blockage of P2Y12 R potently increased ADP-activated pro-inflammatory cytokine IL-1beta gene expression in the head kidney macrophages (HKMs). Moreover, inhibition of P2Y2 and P2Y12 receptor activity with their respective potent antagonists significantly altered some of the LPS-induced pro-inflammatory cytokine gene expression in the HKMs. However, blockade of P2Y12 R did not affect the poly(I:C)-induced pro-inflammatory cytokine gene expression examined in the HKMs. Collectively, we have for the first time reported the role of purinergic P2Y2 and P2Y12 receptors in fish innate immunity. Our findings have also addressed the importance of extracellular ATP and its metabolites in fish innate immune responses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app