Add like
Add dislike
Add to saved papers

Characterization of a recombinant Bacteroides fragilis sialidase expressed in Escherichia coli.

Anaerobe 2018 April
The human gut commensal Bacteroides fragilis produces sialidases that remove a terminal sialic acid from host-derived polysaccharides. Sialidase is considered to be involved in B. fragilis infection pathology. A native B. fragilis sialidase has been purified and characterized, and was shown to be post-translationally modified by glycosylation. However, the biochemical properties of recombinant B. fragilis sialidase expressed in a heterologous host remain uncharacterized. In this study, we examined the enzymatic properties of the 60-kDa sialidase NanH1 of B. fragilis YCH46, which was prepared as a recombinant protein (rNanH1) in Escherichia coli. In E. coli rNanH1 was expressed as inclusion bodies, which were separated from soluble proteins to allow solubilization of insoluble rNanH1 in a buffer containing 8 M urea and renaturation in refolding buffer containing 100 mM CaCl2 and 50 mM L-arginine. The specific activity of renatured rNanH1 measured using 4-methylumberiferyl-α-D-N-acetyl neuraminic acid as a substrate was 6.16 μmol/min/mg. The optimal pH of rNanH1 ranged from 5.0 to 5.5. The specific activity of rNanH1 was enhanced in the presence of calcium ions. rNanH1 preferentially hydrolyzed the sialyl α2,8 linkage and cleaved sialic acids from mucin and serum proteins (e.g., fetuin and transferrin) but not from α1-acid glycoprotein, which is similar to the previously observed biochemical properties for a native sialidase purified from B. fragilis SBT3182. The results and methods described in this study will be useful for preparing and characterizing recombinant proteins for other B. fragilis sialidase isoenzymes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app