Add like
Add dislike
Add to saved papers

Growth differentiation factor 11 improves neurobehavioral recovery and stimulates angiogenesis in rats subjected to cerebral ischemia/reperfusion.

The recent suggestion that growth differentiation factor 11 (GDF11) acts as a rejuvenation factor has remained controversial. However, in addition to its role in aging, the relationship between GDF11 and cerebral ischemia is still an important area that needs more investigation. Here we examined effects of GDF11 on angiogenesis and recovery of neurological function in a rat model of stroke. Exogenous recombinant GDF11 (rGDF11) at different doses were directly injected into the tail vein in rats subjected to cerebral ischemia/reperfusion (I/R). Neurobehavioral tests were performed, the proliferation of endothelial cells (ECs) and GDF11 downstream signal activin-like kinase 5 (ALK5) were assessed, and functional microvessels were measured. Results showed that rGDF11 at a dosage of 0.1 mg/kg/day could effectively activate cerebral angiogenesis in vivo. In addition, rGDF11 improved the modified neurological severity scores and the adhesive removal somatosensory test, promoted proliferation of ECs, induced ALK5 and increased vascular surface area and the number of vascular branch points in the peri-infarct cerebral cortex after cerebral I/R. These effects were suppressed by blocking ALK5. Our novel findings shed new light on the role of GDF11. Our results strongly suggest that GDF11 improves neurofunctional recovery from cerebral I/R injury and that this effect is mediated partly through its proangiogenic effect in the peri-infarct cerebral cortex, which is associated with ALK5. Thus, GDF11/ALK5 may represent new therapeutic targets for aiding recovery from stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app