JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Solid-Phase Synthesis and Antibacterial Activity of Cyclohexapeptide Wollamide B Analogs.

Herein we report the antibacterial structure-activity relationships of cyclic hexapeptide wollamide analogs derived from solid-phase library synthesis. Wollamide B, a cyclic hexapeptide natural product, has been previously found to have activity against Mycobacterium bovis. To further evaluate its antimycobacterial/antibacterial potential, 27 peptides including wollamides A/B, and desotamide B, were synthesized and subsequently tested against a panel of clinically significant bacterial pathogens. Biological evaluation revealed that the cyclic scaffold, amide functionality in position I, tryptophan residue in position V, and the original stereochemistry pattern of the core scaffold were key for antituberculosis and/or antibacterial activity. In addition, against M. tuberculosis and Gram-positive bacteria, residues in position II and/or VI greatly impacted antibacterial activity and selectivity. Wollamides A (3) and B (2) along with their corresponding II (l-Leu) analog 10 retained the most promising antituberculosis activity, with the lowest minimum inhibitory concentration (MIC) against virulent M. tuberculosis H37Rv (MIC = 1.56 μg/mL), as well as desirable selectivity indices (>100). Importantly, the antimicrobial activities of wollamides A and B do not result from disruption of the bacterial membrane, warranting further investigation into their mechanism of action.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app