JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Correction of T cell deficiency in ZAP-70 knock-out mice by simple intraperitoneal adoptive transfer of thymocytes.

The tyrosine kinase zeta chain-associated protein of 70 kDa (ZAP-70) plays a key role in T cell development and signalling. In the absence of ZAP-70, T cell development is arrested in the CD4+ CD8+ double-positive stage, thus ZAP-70 homozygous knockout (ZAP-70-/- ) mice have no mature T cells in their peripheral lymphoid organs and blood, causing severe immunodeficiency. We investigated the early kinetics and long-term effects of wild-type thymocyte transfer on T cell repopulation in ZAP-70-/- mice. We used a single intraperitoneal (i.p.) injection to deliver donor thymocytes to the recipients. Here, we show that after i.p. injection donor thymocytes leave the peritoneum through milky spots in the omentum and home to the thymus, where donor-originated CD4- CD8- double-negative thymocytes most probably restore T cell development and the disrupted thymic architecture. Subsequently, newly developed, donor-originated, single-positive αβ T cells appear in peripheral lymphoid organs, where they form organized T cell zones. The established chimerism was found to be stable, as donor-originated cells were present in transferred ZAP-70-/- mice as late as 8 months after i.p. injection. We demonstrate that a simple i.p. injection of ZAP-70+/+ thymocytes is a feasible method for the long-term reconstitution of T cell development in ZAP-70-deficient mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app