Add like
Add dislike
Add to saved papers

Improvement of off-axis SABR plan verification results by using adapted dose reconstruction algorithms for the Octavius 4D system.

Medical Physics 2018 April
PURPOSE: Stereotactic ablative body radiotherapy (SABR) for lung patients can be performed with volumetric-modulated arc therapy (VMAT) plans using off-axis target geometry to allow treatment in their CBCT verified position. For patient-specific quality assurance measurements using the PTW Octavius 4D phantom (PTW, Freiburg, Germany) (OCT4D) in conjunction with an Octavius 1000SRS array (OCT1000) (PTW, Freiburg, Germany), repositioning the phantom off-axis is required to ensure the measurement area coincides with the tumor. The aim of this work is to quantify delivery errors using an array repositioned off-axis and evaluate new software which incorporates corrections for off-axis phantom measurements.

METHODS: Dynamic conformal arcs and 25 lung SABR plans were created with the isocenter at the patient midline and the target volume off-axis. Measurements were acquired with an OCT4D phantom in conjunction with a 729 array (PTW, Freiburg, Germany) (OCT729) placed at isocenter. These plans were recalculated and delivered to both the OCT729 and OCT1000 arrays repositioned so that the high-dose region was at the center of the phantom. Comparisons were made using VeriSoft v7.0 (PTW, Freiburg, Germany) and the newly implemented version 7.1 with 2%/2 mm gamma criterion (10% threshold) and results correlated with off-axis distance to the tumor.

RESULTS: Average pass rates for VeriSoft v7.0 significantly reduced from 92.7 ± 2.4% to 84.9 ± 4.1% when the phantom was repositioned compared to the isocenter setup for the OCT729. The gamma pass rates significantly decreased the further the phantom was moved off-axis. Significantly higher pass rates were observed for the OCT1000 of 95.7 ± 3.6% and a significant decrease in gamma pass rate with off-axis phantom distance was again observed. In contrast, even with phantom repositioning, the pass rates for analysis with VeriSoft v7.1 were 93.7 ± 2.1% and 99.4 ± 1.1% for OCT729 and OCT1000, respectively. No significant difference in gamma pass rate was observed with off-axis phantom position irrespective of array type with the new software.

CONCLUSION: The errors in QA phantom measurements due to dose reconstruction at off-axis target geometry have been demonstrated for conformal arcs and clinical VMAT SABR plans. A novel software solution implemented by the vendor to allow accurate pass rates has been tested. This solution enables high-resolution arrays with small active detection areas to be used for quality assurance of SABR treatment plans in the off-axis treatment position.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app