Add like
Add dislike
Add to saved papers

Large deformation electrohydrodynamics of a Skalak elastic capsule in AC electric field.

Soft Matter 2018 Februrary 29
The axisymmetric electrohydrodynamic deformation of an elastic capsule with a capacitive membrane obeying the Skalak law under a uniform AC electric field is investigated using analytical and boundary integral theory. The low capillary number (the ratio of destabilizing shear or electric force to the stabilizing elastic force) regime shows that time-averaged prolate and oblate spheroid deformations, and the time-periodic prolate-sphere, oblate-sphere breathing modes are commensurate with the time averaged-deformation. A novel prolate-oblate breathing mode is observed due to an interplay of finite membrane charging time and the field reversal of the AC field. The study, when extended to high capillary numbers, shows new breathing modes of cylinder-prolate, cylinder-oblate, and biconcave-prolate deformation. These are the results of highly compressive normal Maxwell stress at the poles and are aided by a weak compressive equatorial stress, characteristic of a capacitive membrane. The findings of this work should form the basis for the understanding of more complex biological cells and synthetic capsules for industrial applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app