Add like
Add dislike
Add to saved papers

The ion-exchanger-loop-stripping process: ammonium recovery from sludge liquor using NaCl-treated clinoptilolite and simultaneous air stripping.

The technical feasibility of an ammonium recovery process ('ion-exchanger-loop-stripping') for sludge liquor from municipal wastewater treatment plants is examined. The proposed process combines ion-exchange on natural zeolites with simultaneous air stripping of ammonia to produce an industrial NOx-removal agent. Column experiments with continuously recycled NH4 Cl-solutions and a real sludge liquor sample were conducted to determine basic ion-exchange kinetics of the applied clinoptilolite. Mass balances of consecutive loading/regeneration cycles show the positive influence of NaCl-pretreatment as well as simultaneous air stripping on the NH4 + -exchange capacities. Removal rates for NH4 + between 61.5 and 84.6% were achieved at NH4 + -concentrations typical for sludge liquor (900 to 2,300 mg L-1 ). Zeolite loadings ranged from 5 to 8 mg NH4 + g-1 after 90 min of loading. Regeneration rates were between 42.9 and 49.7%, but increased to 64.8% with simultaneous air stripping. A minimal decrease in the ammonium removal rate was observed as a result of matrix effects in sludge liquor (e.g. flocculants, competing ions). Liquid analyses showed a considerable phosphate-reduction in the sludge liquor sample after ion-exchange due to potential struvite or apatite precipitation. The obtained results enable a detailed design, scale-up and further optimization of the ion-exchanger-loop-stripping process in future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app