Add like
Add dislike
Add to saved papers

Selective effects of fenitrothion on murine splenic T-lymphocyte populations and cytokine/granzyme production.

The aim of this study was to investigate in vitro effects of fenitrothion (FNT) on mouse splenic lymphocytes. Here, naïve mice had their spleens harvested and splenocytes isolated. After exposure to FNT for 48 hr: splenocyte viability was measured using a tetrazolium dye assay; cell phenotypes, i.e., B-cells (CD19+ ), T-cells (CD3+ ), and T-cell subsets (CD4+ and CD8+ ), were quantified by flow cytometry; and, production of cytokines/granzyme-B was assessed via enzyme-linked immunosorbent assay. The ability for FNT to induce oxidative stress in the cells was evaluated by measuring hydroxyl radical (·OH) and malondialdehyde (MDA) production and changes in glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activity. The results showed that FNT significantly inhibited splenocyte proliferation, and decreased production of interleukin (IL)-2, interferon gamma, IL-4, and granzyme B, but had no impact on IL-6 production. FNT also selectively decreased splenic T-cell levels but did not induce changes in CD19+ B-cells. Further, within the T-cell populations, percentages of CD3+ , CD4+ , and CD8+ T-cells (particularly CD8+ T-cells) were reduced. Lastly, FNT selectively increased MDA and ·OH production and inhibited SOD and GSH-Px activities in the splenic lymphocytes. These findings suggest that, due to oxidative damage, FNT selectively inhibits splenic T-lymphocyte survival and cytokine/granzyme production in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app