Journal Article
Randomized Controlled Trial
Add like
Add dislike
Add to saved papers

Multiday Pomegranate Extract Supplementation Decreases Oxygen Uptake During Submaximal Cycling Exercise, but Cosupplementation With N-acetylcysteine Negates the Effect.

Pomegranate extract (POMx) has been suggested as an ergogenic aid due to its rich concentration of polyphenols, which are proposed to enhance nitric oxide bioavailability, thereby improving the efficiency of oxygen usage and, consequently, endurance exercise performance. Although acute POMx supplementation improves aerobic exercise performance in untrained individuals, trained athletes appear to require chronic supplementation for a similar effect. Furthermore, the combination of POMx with a thiol antioxidant may prove more effective than POMx alone, due to the protective effects of thiols on nitric oxide. Thus, this study hypothesized that multiday POMx supplementation would decrease the oxygen uptake (VO2 ) required by trained cyclists to perform submaximal exercise and increase performance during a time trial, and that thiol (N-acetylcysteine [NAC]) cosupplementation would enhance these effects. Eight cyclists completed four 8-day supplementation periods: POMx only, NAC only, POMx + NAC (BOTH), and placebo. Following supplementation, they performed submaximal cycling and a 5-min time trial, with VO2 and muscle oxygen saturation (SmO2 ) being recorded. A three-way (POMx × NAC × Intensity) repeated-measures analysis of variance with a Fisher's least significant difference post hoc assessment was performed for dependent variables (p ≤ .05). VO2 during submaximal exercise was reduced with POMx versus placebo (-2.6 ml·min-1 ·kg-1 , p = .009) and BOTH (-2.5 ml·min-1 ·kg-1 , p < .05) and increased with NAC (+1.9 ml·min-1 ·kg-1 , p < .03), despite no main effect of treatment on SmO2 or performance. It appears that POMx's high polyphenol content reduced the VO2 required during submaximal exercise. However, NAC cosupplementation annulled this effect; thus, NAC may interact with nitric oxide to reduce its bioavailability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app