Add like
Add dislike
Add to saved papers

Quorum sensing inhibitors from marine bacteria Oceanobacillus sp. XC22919.

Natural Product Research 2018 Februrary 13
In this study, three active compounds isolated from Oceanobacillus sp. XC22919 were identified as 2-methyl-N-(2'-phenylethyl) butyramide (1), 3-methyl-N-(2'-phenylethyl)-butyramide (2) and benzyl benzoate (3), and were first reported to exhibit the apparent quorum sensing inhibitory activities against C. violaceum 026 and P. aeruginosa. Compounds 1-3 inhibited violacein production of C. violaceum 026 by 10.5-55.7, 11.2-55.7, and 27.2%-95.7%, respectively, and inhibited pyocyanin production of P. aeruginosa by 1.7-50.8, 39.1-90.7, and 57.2%-98.7%, respectively. The azocasein-degrading proteolytic rates of P. aeruginosa were observed by 13.4-31.5, 13.4-28.8, and 11.3%-21.1%, respectively. With respect to elastase, the range of inhibition of activity of compounds 1-3 was 2.1-30.3, 4.2-18.2, and 8.9%-15.7%, respectively. Compounds 1 and 3 also showed a concentration-dependent attenuation in biofilm formation, with the maximum of 50.6% inhibition, and 37.7% inhibition at 100 μg/mL, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app