Add like
Add dislike
Add to saved papers

Dynorphinergic system alterations in the corticostriatal circuitry of neuropathic mice support its role in the negative affective component of pain.

Genes, Brain, and Behavior 2018 Februrary 13
The dynorphinergic system is involved in pain transmission at spinal level, where dynorphin exerts antinociceptive or pronociceptive effects, based on its opioid or non-opioid actions. Surprisingly, little evidence is currently available concerning the supraspinal role of the dynorphinergic system in pain conditions. The present study aimed to investigate whether neuropathic pain is accompanied by prodynorphin (Pdyn) and κ-opioid receptor (Oprk1) gene expression alterations in selected mouse brain areas. To this end, mice were subjected to chronic constriction injury of the right sciatic nerve and neuropathic pain behavioral signs were ascertained after 14 days. At this interval, a marked increase in Pdyn mRNA in the anterior cingulate cortex (ACC) and prefrontal cortex (PFC) was observed. Oprk1 gene expression was increased in the PFC, and decreased in the ACC and nucleus accumbens (NAc). No changes were observed in the other investigated regions. Because of the relationship between dynorphin and the brain-derived neurotrophic factor, and the role of this neurotrophin in chronic pain-related neuroplasticity, we investigated brain-derived neurotrophic factor gene (Bdnf) expression in the areas showing Pdyn or Oprk1 mRNAs changes. Bdnf mRNA levels were increased in both the ACC and PFC, whereas no changes were assessed in the NAc. Present data indicate that the dynorphinergic system undergoes quite selective alterations involving the corticostriatal circuitry during neuropathic pain, suggesting a contribution to the negative affective component of pain. Moreover, parallel increases in Pdyn and Bdnf mRNA at cortical level suggest the occurrence of likely interactions between these systems in neuropathic pain maladaptive neuroplasticity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app