Add like
Add dislike
Add to saved papers

A Smart Superwetting Surface with Responsivity in Both Surface Chemistry and Microstructure.

Angewandte Chemie 2018 March 27
Recently, smart surfaces with switchable wettability have aroused much attention. However, only single surface chemistry or the microstructure can be changed on these surfaces, which significantly limits their wetting performances, controllability, and applications. A new surface with both tunable surface microstructure and chemistry was prepared by grafting poly(N-isopropylacrylamide) onto the pillar-structured shape memory polymer on which multiple wetting states from superhydrophilicity to superhydrophobicity can be reversibly and precisely controlled by synergistically regulating the surface microstructure and chemistry. Meanwhile, based on the excellent controllability, we also showed the application of the surface as a rewritable platform, and various gradient wettings can be obtained. This work presents for the first time a surface with controllability in both surface chemistry and microstructure, which starts some new ideas for the design of novel superwetting materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app