Add like
Add dislike
Add to saved papers

Automated segmentation of hyperreflective foci in spectral domain optical coherence tomography with diabetic retinopathy.

We propose an automated segmentation method to detect, segment, and quantify hyperreflective foci (HFs) in three-dimensional (3-D) spectral domain optical coherence tomography (SD-OCT). The algorithm is divided into three stages: preprocessing, layer segmentation, and HF segmentation. In this paper, a supervised classifier (random forest) was used to produce the set of boundary probabilities in which an optimal graph search method was then applied to identify and produce the layer segmentation using the Sobel edge algorithm. An automated grow-cut algorithm was applied to segment the HFs. The proposed algorithm was tested on 20 3-D SD-OCT volumes from 20 patients diagnosed with proliferative diabetic retinopathy (PDR) and diabetic macular edema (DME). The average dice similarity coefficient and correlation coefficient ([Formula: see text]) are 62.30%, 96.90% for PDR, and 63.80%, 97.50% for DME, respectively. The proposed algorithm can provide clinicians with accurate quantitative information, such as the size and volume of the HFs. This can assist in clinical diagnosis, treatment, disease monitoring, and progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app