Add like
Add dislike
Add to saved papers

Biomarker pattern of ARIA-E participants in phase 3 randomized clinical trials with bapineuzumab.

Neurology 2018 March 7
OBJECTIVE: To evaluate whether amyloid-related imaging abnormalities with edema/effusion (ARIA-E) observed in bapineuzumab clinical trials was associated with specific biomarker patterns.

METHODS: Bapineuzumab, an anti-β-amyloid monoclonal antibody, was evaluated in patients with mild to moderate Alzheimer disease. Amyloid PET imaging, CSF biomarkers, or volumetric MRI (vMRI) were assessed.

RESULTS: A total of 1,512 participants underwent one or more biomarker assessments; 154 developed incident ARIA-E. No differences were observed at baseline between ARIA-E and non-ARIA-E participants in brain amyloid burden by PET, the majority of vMRI measures, or CSF biomarkers, with the exception of lower baseline CSF Aβ42 in APOE ε4 noncarrier ARIA-E vs non-ARIA-E groups (bapineuzumab non-ARIA-E p = 0.027; placebo non-ARIA-E p = 0.012). At week 71, bapineuzumab-treated participants with ARIA-E vs non-ARIA-E showed greater reduction in brain amyloid PET, greater reductions in CSF phosphorylated tau (p-tau) (all comparisons p < 0.01), and total tau (t-tau) (all comparisons p < 0.025), and greater hippocampal volume reduction and ventricular enlargement (all p < 0.05). Greater reduction in CSF Aβ40 concentrations was observed for ARIA-E versus both non-ARIA-E groups (bapineuzumab/placebo non-ARIA-E p = 0.015/0.049). No group differences were observed at week 71 for changes in whole brain volume or CSF Aβ42 .

CONCLUSIONS: Baseline biomarkers largely do not predict risk for developing ARIA-E. ARIA-E was associated with significant longitudinal changes in several biomarkers, with larger reductions in amyloid PET and CSF p-tau and t-tau concentrations, and paradoxically greater hippocampal volume reduction and ventricular enlargement, suggesting that ARIA-E in bapineuzumab-treated cases may be related to increased Aβ efflux from the brain and affecting downstream pathogenic processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app