Add like
Add dislike
Add to saved papers

Morphology- and size-controlled synthesis of a metal-organic framework under ultrasound irradiation: An efficient carrier for pH responsive release of anti-cancer drugs and their applicability for adsorption of amoxicillin from aqueous solution.

In this study, we have reported a biocompatible metal-organic framework (MOF) with ultra-high surface area, which we have shown to have uses as both a cancer treatment delivery system and for environmental applications. Using a sonochemical approach, highly flexible organic H3 BTCTB and ditopic 4,4'-BPDC ligands, along with modulators of acetic acid and pyridine were combined to prepare a Zn(II)-based metal-organic framework, DUT-32, [Zn4 O(BPDC)(BTCTB)4/3 (DEF)39.7 (H2 O)11.3 ]. Powder X-ray diffraction (PXRD), field-emission scanning electron microscopy (FE-SEM), and Fourier transform infrared spectroscopy (FTIR) were used to characterize, the particle size, shape, and structure of the DUT-32. To show the effects of shape and size of DUT-32 micro/nano-structures on doxorubicin (DOX) drug release and amoxicillin (AMX) adsorption, time of sonication, initial reagent concentrations, irradiation frequency, and acetic acid to pyridine molar ratios were optimized. The drug-loaded DUT-32 was soaked in simulated body fluid (SBF) and the drug release ratio was monitored through release time to perform in vitro drug release test. A slow and sustained release was observed for DUT-32 micro/nano-structures, having a considerable drug loading capacity. At the pH values 7.4-4.5, various profiles of pH-responsive release were achieved. Also, the prepared DUT-32 micro/nano-structures are found to be biocompatible with PC3 (prostate cancer) and HeLa (cervical cancer) cell lines, when tested by MTT assay. Moreover, DUT-32 micro/nano-structures were studied to show AMX adsorption from aqueous solution. Finally, kinetic studies indicated that AMX adsorption and drug release of DOX via this MOF are of first-order kinetics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app