Add like
Add dislike
Add to saved papers

Energy efficient room temperature synthesis of cardanol-based novolac resin using acoustic cavitation.

The present study deals with synthesis of cardanol-cased novolac (CBN) resin by the condensation reaction between cardanol and formaldehyde using acoustic cavitation. It is a step-growth polymerization which occurs in the presence of an acid catalyst such as adipic acid, citric acid, oxalic acid, sulphuric acid and hydrochloric acid. CBN was also synthesised by a conventional method for the sake of comparison of techniques. The effect of molar ratio, effect of catalyst, effect of different catalyst and effect of power on the conversion to CBN has been studied. The synthesised CBN was characterized using the Fourier Transform Infra Red Spectroscopy (FTIR), Gel Permeation Chromatography (GPC), Nuclear Magnetic Resonance (NMR) Spectroscopy and Thermogravimetric Analysis (TGA). The reaction was monitored by the Acid value, free formaldehyde content and viscosity of the synthesised product. The reaction time required for the conventionally synthesised CBN was 5 h (300 min) with 120 °C as an operating temperature while sonochemically the time reduced to 30 min at room temperature. The amount of time and energy saved can be quantified. Ultrasound facilitated synthesis was found to be an energy efficient and time-saving method for the synthesis of novolac resin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app