Add like
Add dislike
Add to saved papers

Physical stimulation and scaffold composition efficiently support osteogenic differentiation of mesenchymal stem cells.

Tissue & Cell 2018 Februrary
BACKGROUND: Despite significant achievements in the field of tissue engineering, simplification and improvement of the existing protocols are of great importance. The use of complex differentiation media, due to the presence of multiple factors, may have some undesired effects on cell health and functions. Thus, minimizing the number of involved factors, while maintaining the differentiation efficiency, provides less costly and controllable conditions. Adipose-derived Mesenchymal stem cells (ASCs), the adult stem cells present in adipose tissue, can be a suitable source of stem cells due to abundant and ease of access. The aim of this study is to optimize the osteogenic differentiation of ASCs by chemical composition of scaffold, in the first step, and then by electromagnetic treatments.

METHODS: ASCs were cultured on PVA/PES scaffold and tissue culture polystyrene surfaces (TCPS) and osteogenic differentiation was performed with either osteogenic medium, or electromagnetic field or both. The impact of each treatment on ASCs growth and proliferation was measured by MTT assay. Changes in gene expression levels of osteogenic-specific markers including ALP and RUNX2 were determined by Real Time PCR. Furthermore, alkaline phosphatase activity and calcium deposition were measured.

RESULTS: The MTT assay showed the significant effects on cell growth and respiration in scaffold-seeded ASCs treated with electromagnetic field, compared to control TCPS plate. Also, the electromagnetic treatment, increased alkaline phosphatase activity and calcium deposition. Finally, Real Time PCR showed higher expression of ALP and RUNX2 genes in electromagnetic field groups compared to control groups.

CONCLUSION: It can be concluded that PVA/PES scaffold used in this study improved the osteogenic capacity of ASCs. Moreover, the osteogenic potential of ASCs seeded on PVA/PES scaffold could be augmented by electromagnetic field without any chemical stimulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app