Add like
Add dislike
Add to saved papers

Investigation of Lipid Metabolism by a New Structured Lipid with Medium- and Long-Chain Triacylglycerols from Cinnamomum camphora Seed Oil in Healthy C57BL/6J Mice.

In the present study, a new structured lipid with medium- and long-chain triacylglycerols (MLCTs) was synthesized from camellia oil (CO) and Cinnamomum camphora seed oil (CCSO) by enzymatic interesterification. Meanwhile, the antiobesity effects of structured lipid were investigated through observing the changes of enzymes related to lipid mobilization in healthy C57BL/6J mice. Results showed that after synthesis, the major triacylgeride (TAG) species of intesterificated product changed to LaCC/CLaC (12.6 ± 0.46%), LaCO/LCL (21.7 ± 0.76%), CCO/LaCL (14.2 ± 0.55%), COO/OCO (10.8 ± 0.43%), and OOO (18.6 ± 0.64%). Through second-stage molecular distillation, the purity of interesterified product (MLCT) achieved 95.6%. Later, male C57BL/6J mice were applied to study whether the new structured lipid with MLCT has the efficacy of preventing the formation of obesity or not. After feeding with different diets for 6 weeks, MLCTs could reduce body weight and fat deposition in adipose tissue, lower plasma triacylglycerols (TG) (0.89 ± 0.16 mmol/L), plasma total cholesterol (TC) (4.03 ± 0.08 mmol/L), and hepatic lipids (382 ± 34.2 mg/mice) by 28.8%, 16.0%, and 30.5%, respectively, when compared to the control 2 group. This was also accompanied by increasing fecal lipids (113%) and the level of enzymes including cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), hormone-sensitive lipase (HSL), and adipose triglyceride lipase (ATGL) related to lipid mobilization in MLCT group. From the results, it can be concluded that MLCT reduced body fat deposition probably by modulating enzymes related to lipid mobilization in C57BL/6J mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app