Add like
Add dislike
Add to saved papers

Crystal Structure of Acyl-CoA Oxidase 3 from Yarrowia lipolytica with Specificity for Short-Chain Acyl-CoA.

Acyl-CoA oxidases (ACOXs) play important roles in lipid metabolism, including peroxisomal fatty acid β-oxidation by the conversion of acyl-CoAs to 2-trans-enoyl-CoAs. The yeast Yarrowia lipolytica can utilize fatty acids as a carbon source and thus has extensive biotechnological applications. The crystal structure of ACOX3 from Y. lipolytica ( Yl ACOX3) was determined at a resolution of 2.5 Å. It contained two molecules per asymmetric unit, and the monomeric structure was folded into four domains; Nα, Nβ, Cα1, and Cα2 domains. The cofactor flavin adenine dinucleotide was bound in the dimer interface. The substrate-binding pocket was located near the cofactor, and formed at the interface between the Nα, Nβ, and Cα1 domains. Comparisons with other ACOX structures provided structural insights into how Yl ACOX has a substrate preference for short-chain acyl-CoA. In addition, the structure of Yl ACOX3 was compared with those of medium- and long-chain ACOXs, and the structural basis for their differences in substrate specificity was discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app