Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Base-catalyzed hydrolysis and speciation-dependent photolysis of two cephalosporin antibiotics, ceftiofur and cefapirin.

Water Research 2018 May 2
Lately, special attention has been given to veterinary cephalosporin antibiotics due to their broad activity spectrum and significant consumption. Indeed, the determination of hydrolytic and photolytic kinetics provides a better comprehension of the undesired persistence of cephalosporins in aqueous matrices. In this work, the two widely used veterinary antibiotics ceftiofur (CEF) and cefapirin (CEPA) showed high instability under alkaline conditions, degrading in few minutes at pH > 11. In buffered solutions at neutral pH and natural temperature (T = 22 ± 1 °C), both drugs presented moderate stability (t½ = 3 d, CEPA and 1.4 d, CEF). Our study also demonstrated that CEPA and CEF speciation did not significantly influence the direct photolysis rates. Using a simulated water disinfection set-up (λ = 254 nm), all ionic species of CEF and CEPA presented fast and similar pseudo-first order degradation rates, kapp 0.0095 ± 0.0004 and 0.0092 ± 0.001 cm2 mJ-1 , respectively. Furthermore, using surface water in hydrolysis experiments, CEF demonstrated significant matrix-dependent stability with a half-life (t½ = 14.7 d) tenfold higher than in buffered solutions. In contrast, CEPA presented a very similar hydrolysis rate in river water (t½ = 4.2 d) and a subtle faster photo-degradation rate in this same matrix (kapp 0.0128 ± 0.001 cm2 mJ-1 ), highlighting the importance of disinfection radiation for cephalosporin depletion in aqueous environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app