Add like
Add dislike
Add to saved papers

Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater.

The aim of the present study was to investigate the potential of plant-bacterial synergism in floating treatment wetlands (FTWs) for efficient remediation of an oil field wastewater. Two plants, Brachiara mutica and Phragmites australis, were vegetated on floatable mats to develop FTWs, and inoculated with bacterial cons which were then inoculated with a consortium of hydrocarbon-degrading bacteria (Bacillus subtilis strain LORI66, Klebsiella sp. strain LCRI87, Acinetobacter Junii strain TYRH47, Acinetobacter sp. strain LCRH81). Both plants successfully removed organic and inorganic pollutants from wastewater, but bioaugmentation of P. australis significantly enhanced the plant's efficiency to reduce oil content (97%), COD (93%), and BOD (97%), in wastewater. Analysis of alkane-degrading gene (alkB) abundance and its expression profile further validated a higher microbial growth and degradation activity in water around P. australis as well as its roots and shoots. This study provides insight into the available phytotechnology for remediation of crude oil-contaminated water and introduces a wetland macrophyte, P. australis, with tailor-made bacterial consortium as an effective tool for improved phytoremediation efficiency of FTWs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app