Add like
Add dislike
Add to saved papers

Potential of dissimilatory nitrate reduction pathways in polycyclic aromatic hydrocarbon degradation.

Chemosphere 2018 May
This study investigates the potential of an indigenous estuarine microbial consortium to degrade two polycyclic aromatic hydrocarbons (PAHs), naphthalene and fluoranthene, under nitrate-reducing conditions. Two physicochemically diverse sediment samples from the Lima Estuary (Portugal) were spiked individually with 25 mg L-1 of each PAH in laboratory designed microcosms. Sediments without PAHs and autoclaved sediments spiked with PAHs were run in parallel. Destructive sampling at the beginning and after 3, 6, 12, 30 and 63 weeks incubation was performed. Naphthalene and fluoranthene levels decreased over time with distinct degradation dynamics varying with sediment type. Next-generation sequencing (NGS) of 16 S rRNA gene amplicons revealed that the sediment type and incubation time were the main drivers influencing the microbial community structure rather than the impact of PAH amendments. Predicted microbial functional analyses revealed clear shifts and interrelationships between genes involved in anaerobic and aerobic degradation of PAHs and in the dissimilatory nitrate-reducing pathways (denitrification and dissimilatory nitrate reduction to ammonium - DNRA). These findings reinforced by clear biogeochemical denitrification signals (NO3 - consumption, and NH4 + increased during the incubation period), suggest that naphthalene and fluoranthene degradation may be coupled with denitrification and DNRA metabolism. The results of this study contribute to the understanding of the dissimilatory nitrate-reducing pathways and help uncover their involvement in degradation of PAHs, which will be crucial for directing remediation strategies of PAH-contaminated anoxic sediments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app