Add like
Add dislike
Add to saved papers

A random version of principal component analysis in data clustering.

Principal component analysis (PCA) is a widespread technique for data analysis that relies on the covariance/correlation matrix of the analyzed data. However, to properly work with high-dimensional data sets, PCA poses severe mathematical constraints on the minimum number of different replicates, or samples, that must be included in the analysis. Generally, improper sampling is due to a small number of data respect to the number of the degrees of freedom that characterize the ensemble. In the field of life sciences it is often important to have an algorithm that can accept poorly dimensioned data sets, including degenerated ones. Here a new random projection algorithm is proposed, in which a random symmetric matrix surrogates the covariance/correlation matrix of PCA, while maintaining the data clustering capacity. We demonstrate that what is important for clustering efficiency of PCA is not the exact form of the covariance/correlation matrix, but simply its symmetry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app