Add like
Add dislike
Add to saved papers

Influence of suture size on the frictional performance of surgical suture evaluated by a penetration friction measurement approach.

The frictional performances of surgical sutures have been found to play a vital role in their functionality. The purpose of this paper is to understand the frictional performance of multifilament surgical sutures interacting with skin substitute, by means of a penetration friction apparatus (PFA). The influence of the size of the surgical suture was investigated. The relationship between the friction force and normal force was considered, in order to evaluate the friction performance of a surgical suture penetrating a skin substitute. The friction force was measured by PFA. The normal force applied to the surgical suture was estimated based on a Hertzian contact model, a finite element model (FEM), and a uniaxial deformation model (UDM). The results indicated that the penetration friction force increased as the size of the multifilament surgical suture increased. In addition, when the normal force was predicted by UDM, it was found that the ratio between the friction force and normal force decreased as the normal force increased. A comparison of the results suggested that the UDM was appropriate in predicting the frictional behavior of surgical suturing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app