Add like
Add dislike
Add to saved papers

Towards the scale up of tissue engineered intervertebral discs for clinical application.

Acta Biomaterialia 2018 April 2
Replacement of the intervertebral disc with a viable, tissue-engineered construct that mimics native tissue structure and function is an attractive alternative to fusion or mechanical arthroplasty for the treatment of disc pathology. While a number of engineered discs have been developed, the average size of these constructs remains a fraction of the size of human intervertebral discs. In this study, we fabricated medium (3 mm height × 10 mm diameter) and large (6 mm height × 20 mm diameter) sized disc-like angle ply structures (DAPS), encompassing size scales from the rabbit lumbar spine to the human cervical spine. Maturation of these engineered discs was evaluated over 15 weeks in culture by quantifying cell viability and metabolic activity, construct biochemical content, MRI T2 values, and mechanical properties. To assess the performance of the DAPS in the in vivo space, pre-cultured DAPS were implanted subcutaneously in athymic rats for 5 weeks. Our findings show that both sized DAPS matured functionally and compositionally during in vitro culture, as evidenced by increases in mechanical properties and biochemical content over time, yet large DAPS under-performed compared to medium DAPS. Subcutaneous implantation resulted in reductions in NP cell viability and GAG content at both size scales, with little effect on AF biochemistry or metabolic activity. These findings demonstrate that engineered discs at large size scales will mature during in vitro culture, however, future work will need to address the challenges of reduced cell viability and heterogeneous matrix distribution throughout the construct.

STATEMENT OF SIGNIFICANCE: This work establishes, for the first time, tissue-engineered intervertebral discs for total disc replacement at large, clinically relevant length scales. Clinical translation of tissue-engineered discs will offer an alternative to mechanical disc arthroplasty and fusion procedures, and may contribute to a paradigm shift in the clinical care for patients with disc pathology and associated axial spine and neurogenic extremity pain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app