Add like
Add dislike
Add to saved papers

Functional analysis of a type 2C protein phosphatase gene from Ammopiptanthus mongolicus.

Gene 2018 May 6
In Arabidopsis and certain other plant species, the type 2C protein phosphatases (PP2Cs) of the clade A class have been demonstrated to act as negative regulators in ABA-induced stress responses, such as stomatal closure. The present study reports the identification of a PP2C ortholog from the ancient desert shrub Ammopiptanthus mongolicus (Maxim.) Cheng f. (AmPP2C), which is functionally conserved over its counterparts reported from other plant species. AmPP2C was primarily expressed in leaves, with strong transcriptional accumulation being observed in the guard cells. The expression of AmPP2C was induced in response to PEG or ABA treatments, implying the potential involvement in ABA-induced stress responses. The GFP-tagging observation revealed that AmPP2C was predominantly localized to the nuclei and partly to the cytoplasm. Furthermore, BiFC assays demonstrated an interaction between AmPP2C and the typical protein kinase SnRK2.6 (AmOST1). Overexpression of AmPP2C in Arabidopsis significantly overcame the inhibition of seed germination by ABA. The transgenic Arabidopsis lines exhibited larger stomatal apertures and significantly reduced sensitivity to ABA-induced stomatal closure, which subsequently led to greater water loss and decreased biomass under PEG-simulated drought stress treatments. Under limited nitrogen or potassium supplements, plants overexpressing AmPP2C obtained a superior capability of nitrogen (N) and potassium (K) acquisition in the green parts. Therefore, the impairment of ABA-induced stomatal closure rendered by the function of PP2C helped to identify a potential survival strategy in plants suffering persistent drought stress via the maintenance of the necessary mineral nutrient acquisition driven by transpirational solute flow.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app