Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The first report of siglec-3/CD33 gene in a teleost (rock bream, Oplegnathus fasciatus): An analysis of its spatial expression during stimulation to red seabream iridovirus (RSIV) and two bacterial pathogens.

Siglec-3/CD33 is a myeloid-specific inhibitory receptor that is expressed on cells of the immune system, where it is believed to play a regulatory role, modulating the inflammatory and immune responses. We characterized CD33 (RbCD33) in rock bream which is a transmembrane protein with two IG-like domains and a cytoplasmic tail. It has a deduced amino acid sequence of 390 residues and has tyrosine-based signaling motifs in the cytoplasmic tail. The RbCD33 mRNA was highly expressed in peripheral blood leukocytes and was also detected in the muscle, spleen, skin, head kidney, gills, trunk kidney, heart, stomach, brain, intestine and liver by quantitative real-time PCR. A temporal variation in expression of RbCD33 was observed in different tissues after stimulating with E. tarda, S. iniae and red seabream iridovirus (RSIV). In the head kidney tissue, E. tarda and S. iniae induced RbCD33, while a down regulation was observed with RSIV. In addition, in spleen tissue, S. iniae caused a very high induction of RbCD33 in comparison with an E. tarda and RSIV challenge. In the liver and gill tissues, all three pathogens induced a high expression of RbCD33. The expression pattern in various tissues and its high induction after pathogen stimulation suggests that RbCD33 plays an important role in initiating the immune response via the inhibition of signal transduction of the myeloid lineage cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app