Journal Article
Review
Add like
Add dislike
Add to saved papers

Cause or compensation?-Altered neuronal Ca 2+ handling in Huntington's disease.

Huntington's disease (HD) is a hereditary neurodegenerative disorder of typically middle-aged onset for which there is no disease-modifying treatment. Caudate and putamen medium-sized spiny projection neurons (SPNs) most severely degenerate in HD. However, it is unclear why mutant huntingtin protein (mHTT) is preferentially toxic to these neurons or why symptoms manifest only relatively late in life. mHTT interacts with numerous neuronal proteins. Likewise, multiple SPN cellular processes have been described as altered in various HD models. Among these, altered neuronal Ca2+ influx and intracellular Ca2+ handling feature prominently and are addressed here. Specifically, we focus on extrasynaptic NMDA-type glutamate receptors, endoplasmic reticulum IP3 receptors, and mitochondria. As mHTT is expressed throughout development, compensatory processes will likely be mounted to mitigate any deleterious effects. Although some compensations can lessen mHTT's disruptive effects, others-such as upregulation of the ER-refilling store-operated Ca2+ channel response-contribute to pathogenesis. A causation-based approach is therefore necessary to decipher the complex sequence of events linking mHTT to neurodegeneration, and to design rational therapeutic interventions. With this in mind, we highlight evidence, or lack thereof, that the above alterations in Ca2+ handling occur early in the disease process, clearly interact with mHTT, and show disease-modifying potential when reversed in animals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app