Add like
Add dislike
Add to saved papers

High-Content Microfluidic Screening Platform Used To Identify σ2R/Tmem97 Binding Ligands that Reduce Age-Dependent Neurodegeneration in C. elegans SC_APP Model.

The nematode Caenorhabditis elegans, with tractable genetics and a well-defined nervous system, provides a unique whole-animal model system to identify novel drug targets and therapies for neurodegenerative diseases. Large-scale drug or target screens in models that recapitulate the subtle age- and cell-specific aspects of neurodegenerative diseases are limited by a technological requirement for high-throughput analysis of neuronal morphology. Recently, we developed a single-copy model of amyloid precursor protein (SC_APP) induced neurodegeneration that exhibits progressive degeneration of select cholinergic neurons. Our previous work with this model suggests that small molecule ligands of the sigma 2 receptor (σ2R), which was recently cloned and identified as transmembrane protein 97 (TMEM97), are neuroprotective. To determine structure-activity relationships for unexplored chemical space in our σ2R/Tmem97 ligand collection, we developed an in vivo high-content screening (HCS) assay to identify potential drug leads. The HCS assay uses our recently developed large-scale microfluidic immobilization chip and automated imaging platform. We discovered norbenzomorphans that reduced neurodegeneration in our C. elegans model, including two compounds that demonstrated significant neuroprotective activity at multiple doses. These findings provide further evidence that σ2R/Tmem97-binding norbenzomorphans may represent a new drug class for treating neurodegenerative diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app