Add like
Add dislike
Add to saved papers

Slit pores preferred over cylindrical pores for high selectivity in biomolecular filtration.

Microelectromechanical systems (MEMS) have enabled the fabrication of silicon nanopore membranes (SNM) with uniform non-overlapping "slit shaped" pores. The application of SNM has been suggested for high selectivity of biomolecules in a variety of medical filtration applications. The aim of this study was to rigorously quantify the differences in sieving between slit pore SNM and more commonly modeled cylindrical pore membranes, including effects of the extended Derjaguin, Landau, Verwey, and Overbeek (XDLVO) interactions. Applying equations derived for SNM in previous work, we compare the partition coefficient of slit and cylindrical pore membranes while accounting for both steric and XDLVO interactions. Simple, steric approximations demonstrate that slit pore membranes exhibit significantly lower partition coefficients than cylindrical pore models. Incorporating XDLVO interactions results in an even more marked difference between slit pore and cylindrical pore membranes. These partition coefficients were used to evaluate changes in beta-2-microglobulin (B2M) selectivity. The data demonstrate that XDLVO interactions increase the selectivity advantage that slit pores possess over cylindrical pores, particularly for larger values of the acid-base decay constant. Finally, the bovine serum albumin (BSA) to B2M selectivity ratio was investigated. The selectivity ratio appears larger in slit pores than cylindrical pores for all cases, indicating that slit pores are particularly well suited for hemofiltration applications. The results of this study have significant implications for the application of SNM in membrane processes where highly selective separation of biomolecules is desirable.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app