Add like
Add dislike
Add to saved papers

Rational design toward developing a more efficient laccase: Catalytic efficiency and selectivity.

Laccases are multicopper oxidases that catalyze the oxidation of variety of substrates. The specificity and efficiency of laccases are clearly the important components leading to their remarkable uses. To develop an improved biocatalysts, site directed mutagenesis of laccase from Bacillus HR03 was carried out in the current study. Based on the ABTS-bound crystal structure of CotA from B. subtilis and alignment with closely related enzymes, T415 and T418 at the vicinity of the type 1 copper site were chosen and several mutants (T415I, T418I, T415G, T415G/T418I) were made. Kinetic parameters of the constructs were then determined using ABTS and SGZ as substrates. In comparison with the wild-type, catalytic efficiency toward ABTS was improved by 4 fold in T415I and 1.5 fold in T418I and T415G. T415I and T418I variants were identified to be almost 11 and 27 times more specific for ABTS than for SGZ compared with the wild type. T415I was also found to acquire enhanced thermal stability with the half-life of 60min at 80°C. Secondary and tertiary structure of mutants were analyzed by CD and fluorescence spectroscopy. Our result illustrated that replacement of residues in the substrate-binding pocket would change the specificity and efficiency of variants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app