Add like
Add dislike
Add to saved papers

Analysis of digital gene expression profiling in the gonad of male silkworms (Bombyx mori) under fluoride stress.

Fluorine is an essential element, but excessive fluoride can cause serious effects on the respiratory, digestive, and reproductive systems. Fluorine has been suggested to cause reproductive toxicity in vertebrates, but its potential to reproductively affect invertebrates remains unknown. In the present study, the lepidopteran model insect Bombyx mori was used to assess the reproductive toxicity of NaF. The underlying molecular mechanisms were explored by RNA sequencing, and we investigated the testes transcriptomic profile of B. mori treated with NaF via a digital gene expression (DGE) analysis. Among 520 candidate genes, 297 and 223 were identified as significantly upregulated or downregulated, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were carried out on all genes to determine their biological functions and associated processes. The results indicated that numerous differentially expressed genes are involved in the stress response, detoxification, antibacterial, transport, oxidative phosphorylation, and ribosome. The reliability of the data was confirmed by a quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The changed Glutathione S-transferase (GST) activity and glutathione (GSH) content in the NaF-treated groups were increased and reduced respectively. This study reveals that using RNA-sequencing for the transcriptome profiling of B. mori testes can lead to better comprehension of the male reproductive toxicity effects of NaF. Furthermore, we expect that these results will aid future molecular studies on the reproductive toxicity of NaF in other species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app