Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

MMP9 is involved in HO-1-mediated upregulation of apical junctional complex in Caco-2 cells under oxygen-glucose deprivation.

Ischemia reperfusion injury is a critical factor in the recovery process after intestine trauma and the functional restoration of intestinal reconstruction. This study was the first to explore the expression of apical junctional complex (AJC) induced by heme oxygenase-1 (HO-1) in Caco-2 cells in oxygen-glucose deprivation (OGD) models. Here we showed that HO-1 was upregulated after OGD. Notably, activation of HO-1 largely enhanced the expression of AJC proteins including Claudin-4, E-cadherin and β-catenin in Caco-2 cells, but decreased the expression of matrix metalloproteinase 9 (MMP9). Knockdown of HO-1 attenuated the OGD-induced overexpression of AJC proteins but promoted the expression of MMP9. Interestingly, inhibition of MMP9 further enhanced AJC expression. These results suggest that HO-1 is involved in OGD-evoked upregulation of AJC proteins, which is partly mediated by MMP9 pathway. High expression of HO-1 may play an important role in the pathophysiological process of ischemia reperfusion injury and has potential clinical value for the treatment of intestine related diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app