Add like
Add dislike
Add to saved papers

Magnetic iodixanol - a novel contrast agent and its early characterization.

AIMS: Contrast-induced nephropathy is a commonly encountered problem in clinical practice. The purpose of the study was to design and develop a novel contrast agent, which could be used to prevent contrast-induced nephropathy in the future.

METHODS: In total, 20-220nm magnetic nanoparticles were conjugated with iodixanol, and their radio-opacity and magnetic properties were assessed thereafter. Scanning electron microscopy pictures were acquired. Thereafter, the nanoparticles conjugate was tested in cell culture (HUVEC cells), and Quantibody® assay was studied after cell treatment in 1:5 dilutions for 48h, compared with control.

RESULTS: The conjugate preparation had an adequate radio-opacity. A 4mm magnetic bubble was attached to a bar magnet and the properties were studied. The magnetic bubble maintained its structural integrity in all angles including antigravity position. Scanning electron microscopy showed magnetic nanoparticles in all pictures and the particles are of 100-400nm agglomerates with primary particle sizes of roughly 20nm. 1:5 diluted particles had no effect on secretion of IL-1a, IL-1b, IL-4, IL-10, IL-13 and TNFa. Particles increased secretion of IL-8 from 24h and 48h. Secretion of IFNg was also increased when particles were added to the cells as early as 1h. Likewise, IL-6 was strongly secreted by HUVEC treated with particles from 24h incubation time. In contrast, the secretion of MCP-1 was slightly reduced on HUVEC treated with particles.

CONCLUSION: There is potential for a novel iodixanol-magnetic nanoparticle conjugate to be used in cineradiography. Further investigations need to be performed to study its performance in vitro and in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app