Add like
Add dislike
Add to saved papers

Homeostatic Plasticity in the Hippocampus Facilitates Memory Extinction.

Cell Reports 2018 Februrary 7
Correlated activity in the hippocampus drives synaptic plasticity that is necessary for the recruitment of neuronal ensembles underlying fear memory. Sustained neural activity, on the other hand, may trigger homeostatic adaptations. However, whether homeostatic plasticity affects memory function remains unknown. Here, we use optogenetics to induce cell autonomous homeostatic plasticity in CA1 pyramidal neurons and granule cells of the hippocampus. High-frequency spike trains applied for 10 min decreased the number of excitatory spine synapses and increased the number of inhibitory shaft synapses. This activity stopped dendritic spine formation via L-type voltage-dependent calcium channel activity and protein synthesis. Applied selectively to the ensemble of granule cells encoding a contextual fear memory, the spike trains impaired memory recall and facilitated extinction. Our results indicate that homeostatic plasticity triggered by optogenetic neuronal firing alters the balance between excitation and inhibition in favor of memory extinction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app