Add like
Add dislike
Add to saved papers

Light-Harvesting Strategy during CO 2 -Dependent Photosynthesis in the Green Alga Chlamydomonas reinhardtii.

To maximize the efficiency of photosynthesis, photosynthetic organisms must properly balance their light-harvesting ability and CO2 utilization. However, the molecular mechanisms of light harvesting under various CO2 conditions remain unclear. To reveal these mechanisms, we performed new analysis on cells of the green alga Chlamydomonas reinhardtii under different CO2 conditions. The analysis combines three kinds of fluorometries: pulse-amplitude modulated fluorescence, steady-state fluorescence with absolute intensity, and time-resolved fluorescence. Under low CO2 conditions, the main regulatory mechanism was migration of a light-harvesting chlorophyll-protein complex (LHC) II from photosystem (PS) II to PSI. However, under CO2 -deficient conditions with carbon supplementation, some of the LHCII separated from the PSI and aggregated with quenching. These different light-harvesting abilities of LHCII may play an important role in the regulation of light harvesting in C. reinhardtii under various CO2 conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app