JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Schistosoma mansoni SmKI-1 serine protease inhibitor binds to elastase and impairs neutrophil function and inflammation.

PLoS Pathogens 2018 Februrary
Protease inhibitors have important function during homeostasis, inflammation and tissue injury. In this study, we described the role of Schistosoma mansoni SmKI-1 serine protease inhibitor in parasite development and as a molecule capable of regulating different models of inflammatory diseases. First, we determine that recombinant (r) SmKI-1 and its Kunitz domain but not the C-terminal region possess inhibitory activity against trypsin and neutrophil elastase (NE). To better understand the molecular basis of NE inhibition by SmKI-1, molecular docking studies were also conducted. Docking results suggest a complete blockage of NE active site by SmKI-1 Kunitz domain. Additionally, rSmKI-1 markedly inhibited the capacity of NE to kill schistosomes. In order to further investigate the role of SmKI-1 in the parasite, we designed specific siRNA to knockdown SmKI-1 in S. mansoni. SmKI-1 gene suppression in larval stage of S. mansoni robustly impact in parasite development in vitro and in vivo. To determine the ability of SmKI-1 to interfere with neutrophil migration and function, we tested SmKI-1 anti-inflammatory potential in different murine models of inflammatory diseases. Treatment with SmKI-1 rescued acetaminophen (APAP)-mediated liver damage, with a significant reduction in both neutrophil recruitment and elastase activity. In the model of gout arthritis, this protein reduced neutrophil accumulation, IL-1β secretion, hypernociception, and overall pathological score. Finally, we demonstrated the ability of SmKI-1 to inhibit early events that trigger neutrophil recruitment in pleural cavities of mice in response to carrageenan. In conclusion, SmKI-1 is a key protein in S. mansoni survival and it has the ability to inhibit neutrophil function as a promising therapeutic molecule against inflammatory diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app