Add like
Add dislike
Add to saved papers

Structure-Activity Relationship of Xanthones as Inhibitors of Xanthine Oxidase.

Polygala plants contain a large number of xanthones with good physiological activities. In our previous work, 18 xanthones were isolated from Polygala crotalarioides. Extented study of the chemical composition of the other species Polygala sibirica led to the separation of two new xanthones-3-hydroxy-1,2,6,7,8-pentamethoxy xanthone ( A ) and 6- O -β-d-glucopyranosyl-1,7-dimethoxy xanthone ( C )-together with 14 known xanthones. Among them, some xanthones have a certain xanthine oxidase (XO) inhibitory activity. Furthemore, 14 xanthones as XO inhibitors were selected to develop three-dimensional quantitative structure-activity relationship (3D-QSAR) using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models. The CoMFA model predicted a q² value of 0.613 and an r² value of 0.997. The best CoMSIA model predicted a q² value of 0.608 and an r² value of 0.997 based on a combination of steric, electrostatic, and hydrophobic effects. The analysis of the contour maps from each model provided insight into the structural requirements for the development of more active XO inhibitors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app