Add like
Add dislike
Add to saved papers

Function and maturation of the Fe-S center in dihydroxyacid dehydratase from Arabidopsis .

Dihydroxyacid dehydratase (DHAD) is the third enzyme required for branched-chain amino acid biosynthesis in bacteria, fungi, and plants. DHAD enzymes contain two distinct types of active-site Fe-S clusters. The best characterized examples are Escherichia coli DHAD, which contains an oxygen-labile [Fe4 S4 ] cluster, and spinach DHAD, which contains an oxygen-resistant [Fe2 S2 ] cluster. Although the Fe-S cluster is crucial for DHAD function, little is known about the cluster-coordination environment or the mechanism of catalysis and cluster biogenesis. Here, using the combination of UV-visible absorption and circular dichroism and resonance Raman and electron paramagnetic resonance, we spectroscopically characterized the Fe-S center in DHAD from Arabidopsis thaliana ( At ). Our results indicated that At DHAD can accommodate [Fe2 S2 ] and [Fe4 S4 ] clusters. However, only the [Fe2 S2 ] cluster-bound form is catalytically active. We found that the [Fe2 S2 ] cluster is coordinated by at least one non-cysteinyl ligand, which can be replaced by the thiol group(s) of dithiothreitol. In vitro cluster transfer and reconstitution reactions revealed that [Fe2 S2 ] cluster-containing NFU2 protein is likely the physiological cluster donor for in vivo maturation of At DHAD. In summary, At DHAD binds either one [Fe4 S4 ] or one [Fe2 S2 ] cluster, with only the latter being catalytically competent and capable of substrate and product binding, and NFU2 appears to be the physiological [Fe2 S2 ] cluster donor for DHAD maturation. This work represents the first in vitro characterization of recombinant At DHAD, providing new insights into the properties, biogenesis, and catalytic role of the active-site Fe-S center in a plant DHAD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app