Add like
Add dislike
Add to saved papers

Second Near-Infrared Conjugated Polymer Nanoparticles for Photoacoustic Imaging and Photothermal Therapy.

Photothermal conversion in the second near-infrared (NIR-II) window allows deeper penetration and higher exposure to lasers, but examples of NIR-II photothermal agents are mainly formulated by inorganic compounds. In view of the underlying influence of inorganic materials, a novel NIR-II photothermal nanoagent based on a narrow band gap D-A conjugated polymer (TBDOPV-DT) with 2,2-bithiophene as the donor and thiophene-fused benzodifurandione-based oligo( p-phenylenevinylene) as the acceptor has been developed. More importantly, TBDOPV-DT nanoparticles (TBDOPV-DT NPs) are demonstrated to combine excellent photoacoustic imaging (PAI) and photothermal therapy (PTT) ability. TBDOPV-DT NPs exhibit dramatic photostability and heating reproducibility with a photothermal conversion efficiency of 50%. Especially, the NPs possess a remarkable PTT effect toward cancer cells in vitro and can eliminate tumor cells completely in vivo under 1064 nm laser irradiation, while no appreciable side effects have been observed. This study achieves PAI-guided cancer therapy and sheds light on the future of using organic polymer NPs for the NIR-II PTT of cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app