Add like
Add dislike
Add to saved papers

Deep Eutectic Solvent-Assisted Preparation of Nitrogen/Chloride-Doped Carbon Dots for Intracellular Biological Sensing and Live Cell Imaging.

A novel approach for the preparation of dual-functional carbon dots, i.e., nitrogen- and chloride-doped carbon dots, abbreviated as N/Cl-CDs, is developed with the assistance of a choline chloride-glycerine deep eutectic solvent (DES). The carbon source is provided by urea and the DES serves as a solvent for controlling the preparation of CDs in the absence of water. The dual-element doped carbon dots are oxygen-rich with hydroxyl and amine groups. They exhibit an average particle size of ca. 3.88 nm and give rise to strong and pH-sensitive fluorescent emission at λex /λem = 340/430 nm with a quantum yield of 16.15 ± 1.36%. It is particularly interesting to see that the fluorescence of N/Cl-CDs remains stable in a high-salinity matrix, providing vast potentials for treating real biological sample matrixes with high salinity. The N/Cl-CDs provide an optical probe for intracellular pH sensing and multicolor imaging in HeLa cells. In addition, the N/Cl-CDs show obvious fluorescence response to cytochrome c (cyt- c) with a detection limit of 3.6 mg L-1 (ca. 0.29 μmol L-1 ) within in a range of 10-500 mg L-1 , providing potentials for fluorescence detection of cyt- c as well as facilitating intracellular cyt- c imaging.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app