JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Identification of Disease Susceptibility Alleles in the Next Generation Sequencing Era.

The development of next generation sequencing (NGS) technologies has transformed the study of human genetic variation. In less than a decade, NGS has facilitated the discovery of causal mutations in both rare, monogenic diseases and common, heterogeneous disorders, leading to unprecedented improvements in disease diagnosis and treatment strategies. Given the rapid evolution of NGS platforms, it is now possible to analyze whole genomes and exomes quickly and affordably. Further, emerging NGS applications, such as single-cell sequencing, have the power to address specific issues like somatic variation, which is yielding new insights into the role of somatic mutations in cancer and late-onset diseases. Despite limitations associated with current iterations of NGS technologies, the impact of this approach on identifying disease-causing variants has been significant. This chapter provides an overview of several NGS platforms and applications and discusses how these technologies can be used in concert with experimental and computational strategies to identify variants with a causative effect on disease development and progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app