Add like
Add dislike
Add to saved papers

Wafer-scale, layer-controlled organic single crystals for high-speed circuit operation.

Science Advances 2018 Februrary
Two-dimensional (2D) layered semiconductors are a novel class of functional materials that are an ideal platform for electronic applications, where the whole electronic states are directly modified by external stimuli adjacent to their electronic channels. Scale-up of the areal coverage while maintaining homogeneous single crystals has been the relevant challenge. We demonstrate that wafer-size single crystals composed of an organic semiconductor bimolecular layer with an excellent mobility of 10 cm2 V-1 s-1 can be successfully formed via a simple one-shot solution process. The well-controlled process to achieve organic single crystals composed of minimum molecular units realizes unprecedented low contact resistance and results in high-speed transistor operation of 20 MHz, which is twice as high as the common frequency used in near-field wireless communication. The capability of the solution process for scale-up coverage of high-mobility organic semiconductors opens up the way for novel 2D nanomaterials to realize products with large-scale integrated circuits on film-based devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app