Add like
Add dislike
Add to saved papers

Glucose repression can be alleviated by reducing glucose phosphorylation rate in Saccharomyces cerevisiae.

Scientific Reports 2018 Februrary 9
Microorganisms commonly exhibit preferential glucose consumption and diauxic growth when cultured in mixtures of glucose and other sugars. Although various genetic perturbations have alleviated the effects of glucose repression on consumption of specific sugars, a broadly applicable mechanism remains unknown. Here, we report that a reduction in the rate of glucose phosphorylation alleviates the effects of glucose repression in Saccharomyces cerevisiae. Through adaptive evolution under a mixture of xylose and the glucose analog 2-deoxyglucose, we isolated a mutant strain capable of simultaneously consuming glucose and xylose. Genome sequencing of the evolved mutant followed by CRISPR/Cas9-based reverse engineering revealed that mutations in the glucose phosphorylating enzymes (Hxk1, Hxk2, Glk1) were sufficient to confer simultaneous glucose and xylose utilization. We then found that varying hexokinase expression with an inducible promoter led to the simultaneous utilization of glucose and xylose. Interestingly, no mutations in sugar transporters occurred during the evolution, and no specific transporter played an indispensable role in simultaneous sugar utilization. Additionally, we demonstrated that slowing glucose consumption also enabled simultaneous utilization of glucose and galactose. These results suggest that the rate of intracellular glucose phosphorylation is a decisive factor for metabolic regulations of mixed sugars.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app