Add like
Add dislike
Add to saved papers

EDDS enhanced Shewanella putrefaciens CN32 and α-FeOOH reductive dechlorination of carbon tetrachloride.

Chemosphere 2018 May
S,S-ethylenediamine-N,N-disuccinic acid (EDDS) enhanced reductive dissolution of α-FeOOH by Shewanella putrefaciens CN32 (CN32), resulting in formation of surface-bound Fe(II) species (FeII EDDS) to improve reductive dechlorination of carbon tetrachloride (CT). The pseudo-first-order rate constants for bio-reduction extents of α-FeOOH by CN32 in the presence of 1.36 mM EDDS was 0.023 ± 0.0003 d-1 which was higher than without EDDS. The enhancement mechanism of bio-reduction was attributed to the strong complexation ability of EDDS to formed FeIII EDDS, which could be better utilized by CN32. The dechlorination kinetic of CT by FeII EDDS (2.016 h-1 ) in the presence of 1.36 mM EDDS was 24 times faster than without EDDS. Chloroform were detected as main products for the degradation of CT. The chemical analyses and morphological observation showed that combination between EDDS and Fe2+ produced FeII EDDS complex, which had a reductive potential of -0.375 V and significantly enhanced CT dechlorination. The results showed that EDDS played an important role in enhancing the bio-reduction of α-FeOOH to accelerate reductive dechlorination of CT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app