Add like
Add dislike
Add to saved papers

Cd sequestration by bacteria-aluminum hydroxide composites.

Chemosphere 2018 May
Microbe-associated aluminum (Al) hydroxides occur naturally in aquatic and geologic environments and they might play a crucial role in the sequestration of trace metals because these composite solids comprise both reactive mineral and organic surface, but how they do it still remains unknown. Here we replicate Al hydroxide organo-mineral composite formation in soil and sediments by synthesising composites using Pseudomonas putida cells, during coprecipitation with Al hydroxide. Morphological and ATR-FTIR analysis show closely attached nano-sized Al hydroxides on the bacterial surface. For composites dominated by either bacteria or Al hydroxide, an enhanced metal adsorption is observed on the composites than on pure Al hydroxide at pH < 6. Cd uptake by the mainly Al mineral composite is approximately additive, i.e., the sum of the end-member metal adsorptivities, whereas that on the mainly bacteria composite is non-additive. This non-additive sorption is not only due to the blockage of surface reactive sorption sites, but more importantly the changes of surface charge when bacteria and Al mineral are interacted. EXAFS results show that Cd is predominately sorbed as a bidentate corner-sharing complex on the amorphous Al hydroxide surface and a carboxyl-binding on the bacterial surface. This study has important implications for understanding both Al and trace metal cycling in microbe-rich geologic environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app