Add like
Add dislike
Add to saved papers

Stereoselective hydroxylation of isophorone by variants of the cytochromes P450 CYP102A1 and CYP101A1.

The stereoselective oxidation of hydrocarbons is an area of research where enzyme biocatalysis can make a substantial impact. The cyclic ketone isophorone was stereoselectively hydroxylated (≥95%) by wild-type CYP102A1 to form (R)-4-hydroxyisophorone, an important chiral synthon and flavour and fragrance compound. CYP102A1 variants were also selective for 4-hydroxyisophorone formation and the product formation rate increased over the wild-type enzyme by up to 285-fold, with the best mutants being R47L/Y51F/I401P and A74G/F87V/L188Q. The latter variant, which contained mutations in the distal substrate binding pocket, was marginally less selective. Combining perfluorodecanoic acid decoy molecules with the rate accelerating variant R47L/Y51F/I401P engendered further improvement with the purified enzymes. However when the decoy molecules were used with A74G/F87V/L188Q the amount of product generated by the enzyme was reduced. Addition of decoy molecules to whole-cell turnovers did not improve the productivity of these CYP102A1 systems. WT CYP101A1 formed significant levels of 7-hydroxyisophorone as a minor product alongside 4-hydroxyisophorone. However the F87W/Y96F/L244A/V247L CYP101A1 mutant was ≥98% selective for (R)-4-hydroxyisophorone. A comparison of the two enzyme systems using whole-cell oxidation reactions showed that the best CYP101A1 variant was able to generate more product. We also characterised that the further oxidation metabolite 4-ketoisophorone was produced and then subsequently reduced to levodione by an endogenous Escherichia coli ene reductase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app