Add like
Add dislike
Add to saved papers

Characterization of Mechanisms of Glutathione Conjugation with Halobenzoquinones in Solution and HepG2 Cells.

Halobenzoquinones (HBQs) are a class of emerging disinfection byproducts. Chronic exposure to chlorinated drinking water is potentially associated with an increased risk of human bladder cancer. HBQ-induced cytotoxicity involves depletion of cellular glutathione (GSH), but the underlying mechanism remains unclear. Here we used ultrahigh performance liquid chromatography-high resolution mass spectrometry and electron paramagnetic resonance spectroscopy to study interactions between HBQs and GSH and found that HBQs can directly react with GSH, forming various glutathionyl conjugates (HBQ-SG) in both aqueous solution and HepG2 cells. We found that the formation of HBQ-SG varies with the initial molar ratio of GSH to HBQ in reaction mixtures. Higher molar ratios of GSH to HBQ facilitate the conjugation of more GSH molecules to an HBQ molecule. We deduced the reaction mechanism between GSH and HBQs, which involves redox cycling-induced formation of halosemiquinone (HSQ) free radicals and glutathione disulfide, Michael addition, as well as nucleophilic substitution. The proposed reaction rates are in the following order: formation of HSQ radicals > substitution of bromine by GSH > Michael addition of GSH on the benzoquinone ring > substitution of chlorine by GSH > substitution of the methyl group by GSH. The conjugates identified in HBQ-treated HepG2 cells were the same as those found in aqueous solution containing a 5:1 ratio of GSH:HBQs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app