Add like
Add dislike
Add to saved papers

Combination Treatment With Exogenous GDNF and Fetal Spinal Cord Cells Results in Better Motoneuron Survival and Functional Recovery After Avulsion Injury With Delayed Root Reimplantation.

When spinal roots are torn off from the spinal cord, both the peripheral and central nervous system get damaged. As the motoneurons lose their axons, they start to die rapidly, whereas target muscles atrophy due to the denervation. In this kind of complicated injury, different processes need to be targeted in the search for the best treatment strategy. In this study, we tested glial cell-derived neurotrophic factor (GDNF) treatment and fetal lumbar cell transplantation for their effectiveness to prevent motoneuron death and muscle atrophy after the spinal root avulsion and delayed reimplantation. Application of exogenous GDNF to injured spinal cord greatly prevented the motoneuron death and enhanced the regeneration and axonal sprouting, whereas no effect was seen on the functional recovery. In contrast, cell transplantation into the distal nerve did not affect the host motoneurons but instead mitigated the muscle atrophy. The combination of GDNF and cell graft reunited the positive effects resulting in better functional recovery and could therefore be considered as a promising strategy for nerve and spinal cord injuries that involve the avulsion of spinal roots.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app